IP Technology-The Future for Industrial Automation

Mike Hannah, Market Development Manager, Rockwell Automation- June 2014

 quote start IP is undoubtedly the future of industrial automation quote end

IHS report forecasts tremendous growth in IP-addressable devices as manufacturers, industrial operators seek to capture Internet of Things value

A new IHS Technology report forecasts that industrial automation will make up the majority of the Internet of Things by 2025, and Internet Protocol (IP)-addressable devices are the key enabling force that will get industry there.

Industrial automation accounts for slightly more than half of the installed base for all Internet-connected devices in 2012, according to the IHS report, “Industrial Internet of Things – 2014 Edition.” By 2025, the industrial automation sector will account for nearly three-fourths of all connected devices.

Equally impressive is the pace at which that installed base is expected to grow. The report estimates that the number of Internet-connected devices in the industrial automation sector will increase more than fiftyfold from 2012 to 2025 – at a compound annual growth rate of 36.3 percent.

Research Study Confirms IP Technology is the Future for Industrial Automation 

“Many of these devices will be equipment that is currently unconnected but expected to incorporate connectivity and processing technology and be IP addressable,” the report said.

IHS defined an Internet-connected device in the report as any device (ranging from a sensor to a powerful computing system) that can directly connect to the Internet and has a unique IP address. Such devices are the “foundation for the idea of the Internet of Things,” the report said. This is an important distinction because organizations risk falling behind their competitors if they don’t make the choices that are best for their networks – and more importantly best for their businesses – when upgrading their infrastructures.

This diagram illustrates how central IP-based devices are to the Internet of Things, and affirms the decision made by many leading manufacturers and industrial operators to use IP-technology. Only the end-to-end connectivity of an IP-centric infrastructure can ensure the scalability and harmonious coexistence of all Internet-connected devices, regardless of whether they were originally designed for industrial or commercial use.

The exclusion of non-IP addressable devices and closed networks suggests that manufacturers and industrial users who want the full value of the Internet of Things must move toward communications that use standard Transmission Control Protocol/Internet Protocol (TCP/IP), or risk falling behind their competition. This decision reduces design complexity, ensures the seamless integration of both industrial and commercial devices across the entire value chain, and enables users to leverage continued industry investment and innovation in compatible technologies (such as 1 GB, 10 GB Ethernet, video and voice over IP).

Research Study Confirms IP Technology is the Future for Industrial Automation 

Nodes Will Dominate

So what will the breakdown of these billions of connected devices in industrial automation look like as they’re deployed in the coming years?

Internet-connected devices can be segmented into three different device classes: nodes, controllers and infrastructure. Among the three, the IHS report estimated that nodes, which include devices such as drives, I/O blocks and sensors, will account for roughly 80 percent of all Internet-connected devices shipped in 2018. This is due to the use of smart, connected devices in a broadening mix of market segments, such as transportation and building automation. On the other hand, shipments of infrastructure devices, while significantly lower in total number, will grow at the highest rate in that timeframe, with the total number of devices more than quadrupling from 2012 to 2018. This indicates that converged network architectures will become more and more prevalent in industrial applications.

Looking at wired versus wireless devices, wired devices are expected to dominate, accounting for more than 90 percent of all devices shipped in 2018. However, shipments of all types of wireless devices in 2018 are expected to increase three to four times from their 2012 levels – an indication that the demand for wireless continues to grow.

Unifying Operations and Business Systems

Manufacturers and other industrial organizations have long used automation to improve productivity, reduce costs and deliver consistent quality. This looming surge in Internet-connected devices has the potential to deliver even greater capabilities and improvements to today’s automated industrial operations, from the shop floor to the top floor.

‘The counter to economic slowdown is the continuing pressure for businesses to be more efficient and productive and, therefore, more profitable. This is good news for the industrial sectors, as it increases the incentive to employ more automation. This in turn has an effect on the need to network this technology.’ Source: Industrial Internet of Things – 2014 Edition, IHS Technology

A truly connected enterprise allows for the complete integration of information across both manufacturing and business operations. It also enables the collection, coordination and sharing of valuable data from virtually every aspect of a company’s operations so workers can make better, more-informed decisions at every level.

Still, companies have a long way to go. A 2013 IndustryWeek survey of U.S. manufacturing executives and professionals found that a mere 14 percent of respondents said their plant-floor data is completely integrated with their business systems.

One of the core components of a connected enterprise is the deployment of a single, unified network infrastructure. As companies evaluate design options for the network on which they will base their connected devices, standard Ethernet is the world’s most common computing network and a logical choice given advances in the technology for industrial use.

Indeed, the IHS Technology report confirmed that previous industry concerns about Ethernet-based systems are being put to rest as modern industrial Ethernet systems prove fully capable of real-time and reliable communications. The use of network-based integrated safety systems and a growing reliance on wireless communications in industrial settings also have helped increase confidence in and promote use of Ethernet-based network technology.

Multiple Forces at Work

As the IHS Technology report points out, multiple forces are at play in driving industry to join the Internet of Things revolution. Industrial Internet, Industry 4.0, the Industrial IP Advantage (IIPA) and other initiatives around the world are helping industry better understand the benefits of connecting their industrial automation and business systems so they can unleash new gains in productivity and efficiency.

After all, there’s plenty at stake: The Internet of Things is expected to generate a $3.88 trillion in potential value for global manufacturers. However, while the benefits of a converged network are clear, how everyone will get there has not yet been decided.

Those who remain undecided about the direction they will take should look to the IHS report for a simple truth: IP is undoubtedly the future of industrial automation.

The full report “Industrial Internet of Things – 2014 Edition” is available from IHS Technology. More information on the report and an abstract are available on the IHS Technology websit

2014 IEEE-SA ETHERNET & IP @ AUTOMOTIVE TECHNOLOGY DAY

Moving towards a mature and pervasive automotive network 
From infotainment to autonomous driving, how Ethernet is uniquely qualified to transform 
the vehicle

The IEEE Standards Association (IEEE-SA) Ethernet & IP @ Automotive Technology Day is the number one venue for OEMs, suppliers, semiconductor vendors and tool providers to discuss and learn about the evolution of Ethernet standards, technologies and applications in the automotive environment.

Now, for the first time under IEEE-SA sponsorship, the 2014 Technology Day will build upon and expand this successful series of previous industry sponsored events.

The IEEE-SA Ethernet & IP @ Automotive Technology Day is open to anyone interested in next generation automotive communication technologies, as well as those currently involved in related standardization and interoperability activities.

For information on Sponsorship opportunities or to join our mailing list, please contact 
eipatd-requests@ieee.org.

Internet Protocol

Page d'aide sur l'homonymie Pour les articles homonymes, voir IP.

Pile de protocoles

7. Application

6. Présentation

5. Session

4. Transport

3. Réseau

2. Liaison

1. Physique


Modèle Internet

Modèle OSI

modifier Consultez la documentation du modèle

Internet Protocol (abrégé en IP) est une famille de protocoles de communication de réseau informatique conçus pour être utilisés par Internet. Les protocoles IP sont au niveau 3 dans le modèle OSI. Les protocoles IP s'intègrent dans la suite des protocoles Internet et permettent un service d'adressage unique pour l'ensemble des terminaux connectés.

Vint Cerf, le concepteur d'IP

·                     2 Services délivrés

·                     3 Fiabilité

·                     4 Historique des versions

o                                        4.1 Épuisement des adresses IPv4

·                     5 Notes et références

·                     6 Voir aussi

o                                        6.1 Articles connexes

o                                        6.2 Liens externes

Fonctionnement[modifier | modifier le code]

Lors d'une communication entre deux postes, le flux de données provenant de la couche transport — niveau 4 du modèle OSI — (par exemple des segments TCP) est encapsulé dans des paquets par le protocole IP lors de leur passage au niveau de la couche réseau. Ces paquets sont ensuite transmis à la couche de liaison de données — niveau 2 du modèle OSI — afin d'y être encapsulés dans des trames (par exemple Ethernet).

Lorsque deux terminaux communiquent entre eux via ce protocole, aucun chemin pour le transfert des données n'est établi à l'avance : il est dit que le protocole est « non orienté connexion ». Par opposition, pour un système comme le réseau téléphonique commuté, le chemin par lequel va passer la voix (ou les données) est établi au commencement de la connexion : le protocole est « orienté connexion ».

Services délivrés[modifier | modifier le code]

Les protocoles IP assurent l'acheminement au mieux (best-effort delivery) des paquets. Ils ne se préoccupent pas du contenu des paquets, mais fournissent une méthode pour les mener à destination.

Fiabilité[modifier | modifier le code]

Les protocoles IP sont considérés comme « non fiables ». Cela ne signifie pas qu'ils n'envoient pas correctement les données sur le réseau, mais qu'ils n'offrent aucune garantie pour les paquets envoyés sur les points suivants :

·                    corruption de données ;

·                    ordre d'arrivée des paquets (un paquet A peut être envoyé avant un paquet B, mais le paquet B peut arriver avant le paquet A) ;

·                    perte ou destruction de paquet ;

·                    duplication des paquets.

En termes de fiabilité, le seul service offert par un protocole IP est de s'assurer que les en-têtes de paquets transmis ne comportent pas d'erreurs grâce à l'utilisation de somme de contrôle (checksum). Si l'en-tête d'un paquet comprend une erreur, sa somme de contrôle ne sera pas valide et le paquet sera détruit sans être transmis. En cas de destruction d'un paquet, aucune notification n'est envoyée à l'expéditeur (encore qu'un paquet ICMP peut être envoyé).

Les garanties qu'un protocole IP n'offre pas sont déléguées aux protocoles de niveau supérieur. La raison principale de cette absence de gestion de la fiabilité est la volonté de réduire le niveau de complexité des routeurs et ainsi de leur permettre de disposer d'une plus grande rapidité. L'intelligence est alors déportée vers les points d'extrémité du réseau.

Historique des versions[modifier | modifier le code]

Articles détaillés : IPv4 et IPv6.

En-tête IPv4.

En-tête IPv6.

IPv4 est le protocole le plus couramment utilisé en 2012 sur Internet tout comme sur les réseaux privés. IPv6 est son successeur. IPv4 utilise des adresses codées sur 32 bits (soit en théorie 4 294 967 296 adresses possibles) tandis qu'IPv6 les code sur 128 bits (soit en théorie 3,4×1038 adresses possibles).

Le premier champ d'un paquet d'un protocole IP est composé de 4 bits qui indiquent la version du protocole utilisé. La valeur 0100 (4 en binaire) est utilisée pour IPv4, 0110 (6 en binaire) pour IPv6. La valeur 0101 (5 en binaire) est utilisée pour le protocole Internet Stream Protocol, la valeur 0111 (7 en binaire) pour TP/IX (RFC 1475), 1000 (8 en binaire) pour PIP (RFC 1621) et 1001 (9 en binaire) pour TUBA (« TCP and UDP with Bigger Addresses », RFC 1347)1.

Épuisement des adresses IPv4[modifier | modifier le code]

Article détaillé : Épuisement des adresses IPv4.

La transition vers le protocole IPv6 permet de contourner une pénurie d'adresses publiques, ce qui aurait pu freiner la croissance du nombre de terminaux reliés à Internet. En attendant, les opérateurs envisagent le recours à des traducteurs d'adresse réseau à grande échelle pour prolonger le fonctionnement d'IPv4.

Distribution de l'espace d'adressage IPv4 en février 2011.

Notes et références[modifier | modifier le code]

1.       http://www.ai.univ-paris8.fr/~ga/Public/EnteteProtocoles.pdf [archive]

Voir aussi[modifier | modifier le code]

Articles connexes[modifier | modifier le code]

·                    Adresse IP

·                    Adresse IPv6

·                    Journée mondiale IPv6

·                    IPv4

·                    IPv6

·                    Internet

·                    TCP/IP

·                    SCTP

·                    Maximum Transmission Unit (MTU)

·                    Transmission Control Protocol (TCP)

·                    RIPE

Liens externes[modifier | modifier le code]

·                    RFC 791, Internet Protocol

·                    A Protocol for Packet Network Intercommunication (1974), dans lequel Vinton Cerf et Robert E. Kahn présentent le protocole IP