IP is undoubtedly the future of industrial automation
IHS
report forecasts tremendous growth in IP-addressable devices as manufacturers,
industrial operators seek to capture Internet of Things value
A
new IHS Technology report forecasts that industrial automation will make up the majority of
the Internet of Things by 2025, and Internet Protocol (IP)-addressable devices are the key
enabling force that will get industry there.
Industrial
automation accounts for slightly more than half of the installed base for all
Internet-connected devices in 2012, according to the IHS report, “Industrial
Internet of Things – 2014 Edition.” By 2025, the industrial automation sector
will account for nearly three-fourths of all connected devices.
Equally
impressive is the pace at which that installed base is expected to grow. The
report estimates that the number of Internet-connected devices in the
industrial automation sector will increase more than fiftyfold
from 2012 to 2025 – at a compound annual growth rate of 36.3 percent.
“Many
of these devices will be equipment that is currently unconnected but expected
to incorporate connectivity and processing technology and be IP addressable,”
the report said.
IHS
defined an Internet-connected device in the report as any device (ranging from
a sensor to a powerful computing system) that can directly connect to the
Internet and has a unique IP address. Such devices are the “foundation for the
idea of the Internet of Things,” the report said. This is an important
distinction because organizations risk falling behind their competitors if they
don’t make the choices that are best for their networks – and more importantly
best for their businesses – when upgrading their infrastructures.
This
diagram illustrates how central IP-based devices are to the Internet of Things,
and affirms the decision made by many leading manufacturers and industrial
operators to use IP-technology. Only the end-to-end connectivity of an
IP-centric infrastructure can ensure the scalability and harmonious coexistence
of all Internet-connected devices, regardless of whether they were originally
designed for industrial or commercial use.
The
exclusion of non-IP addressable devices and closed networks suggests that
manufacturers and industrial users who want the full value of the Internet of
Things must move toward communications that use standard Transmission Control
Protocol/Internet Protocol (TCP/IP), or risk falling behind their competition. This
decision reduces design complexity, ensures the seamless integration of both
industrial and commercial devices across the entire value chain, and enables
users to leverage continued industry investment and innovation in compatible
technologies (such as 1 GB, 10 GB Ethernet, video and voice over IP).
Nodes
Will Dominate
So
what will the breakdown of these billions of connected devices in industrial
automation look like as they’re deployed in the coming years?
Internet-connected
devices can be segmented into three different device classes: nodes,
controllers and infrastructure. Among the three, the IHS report estimated that
nodes, which include devices such as drives, I/O blocks and sensors, will
account for roughly 80 percent of all Internet-connected devices shipped in
2018. This is due to the use of smart, connected devices in a broadening mix of
market segments, such as transportation and building automation. On the other
hand, shipments of infrastructure devices, while significantly lower in total
number, will grow at the highest rate in that timeframe, with the total number
of devices more than quadrupling from 2012 to 2018. This indicates that
converged network architectures will become more and more prevalent in
industrial applications.
Looking
at wired versus wireless devices, wired devices are expected to dominate, accounting
for more than 90 percent of all devices shipped in 2018. However, shipments of
all types of wireless devices in 2018 are expected to increase
Unifying
Operations and Business Systems
Manufacturers
and other industrial organizations have long used automation to improve
productivity, reduce costs and deliver consistent quality. This looming surge
in Internet-connected devices has the potential to deliver even greater
capabilities and improvements to today’s automated industrial operations, from
the shop floor to the top floor.
‘The
counter to economic slowdown is the continuing pressure for businesses to be
more efficient and productive and, therefore, more profitable. This is good
news for the industrial sectors, as it increases the incentive to employ more
automation. This in turn has an effect on the need to network this technology.’
Source: Industrial Internet of Things – 2014 Edition, IHS Technology
A
truly connected enterprise allows for the complete integration of information
across both manufacturing and business operations. It also enables the
collection, coordination and sharing of valuable data from virtually every
aspect of a company’s operations so workers can make better, more-informed
decisions at every level.
Still,
companies have a long way to go. A 2013 IndustryWeek
survey of
One
of the core components of a connected enterprise is the deployment of a single,
unified network infrastructure. As companies evaluate design options for the
network on which they will base their connected devices, standard Ethernet is
the world’s most common computing network and a logical choice given advances
in the technology for industrial use.
Indeed,
the IHS Technology report confirmed that previous industry concerns about
Ethernet-based systems are being put to rest as modern industrial Ethernet systems prove fully capable of real-time and reliable communications. The use of
network-based integrated safety systems and a growing reliance on wireless communications
in industrial settings also have helped increase confidence in and promote use
of Ethernet-based network technology.
Multiple
Forces at Work
As
the IHS Technology report points out, multiple forces are at play in driving
industry to join the Internet of Things revolution. Industrial Internet,
Industry 4.0, the Industrial IP
Advantage (IIPA) and other initiatives around the world are helping industry better
understand the benefits of connecting their industrial automation and business
systems so they can unleash new gains in productivity and efficiency.
After
all, there’s plenty at stake: The Internet of Things is expected to generate a $3.88 trillion in potential
value for global manufacturers. However, while the benefits of a converged
network are clear, how everyone will get there has not yet been decided.
Those
who remain undecided about the direction they will take should look to the IHS
report for a simple truth: IP is undoubtedly the future of industrial
automation.
The
full report “Industrial Internet of Things – 2014 Edition” is available from
IHS Technology. More information on the report and an abstract are available on
the IHS Technology websit
2014 IEEE-SA ETHERNET & IP @
AUTOMOTIVE TECHNOLOGY DAY
Moving towards
a mature and pervasive automotive network
From infotainment to autonomous driving,
how Ethernet is uniquely qualified to transform
the vehicle
The IEEE
Standards Association (IEEE-SA) Ethernet & IP @ Automotive Technology Day
is the number one venue for OEMs, suppliers, semiconductor vendors and tool
providers to discuss and learn about the evolution of Ethernet standards,
technologies and applications in the automotive environment.
Now, for the
first time under IEEE-SA sponsorship, the 2014 Technology Day will build upon
and expand this successful series of previous industry sponsored events.
The IEEE-SA
Ethernet & IP @ Automotive Technology Day is open to anyone interested in
next generation automotive communication technologies, as well as those
currently involved in related standardization and interoperability activities.
For
information on Sponsorship opportunities or to join our mailing list, please
contact
eipatd-requests@ieee.org.
Pour les articles homonymes, voir IP.
7. Application 6. Présentation 5. Session 4. Transport 3. Réseau 2. Liaison 1. Physique |
![]() |
Internet Protocol (abrégé en IP)
est une famille de protocoles de
communication de réseau
informatique conçus
pour être utilisés par Internet.
Les protocoles IP sont au niveau 3 dans le modèle OSI. Les protocoles IP s'intègrent dans
la suite des
protocoles Internet et
permettent un service d'adressage unique pour l'ensemble des terminaux
connectés.
Vint Cerf, le concepteur d'IP
o
4.1 Épuisement des adresses IPv4
Lors d'une communication entre deux postes, le flux de données
provenant de la couche transport — niveau 4 du modèle OSI —
(par exemple des segments TCP)
est encapsulé dans des paquets par
le protocole IP lors de leur passage au niveau de la couche réseau. Ces paquets sont ensuite
transmis à la couche de liaison de données — niveau 2 du modèle OSI — afin d'y
être encapsulés dans des trames (par exemple Ethernet).
Lorsque deux terminaux communiquent entre eux via ce protocole, aucun chemin pour le
transfert des données n'est établi à l'avance : il est dit que le
protocole est « non orienté connexion ». Par opposition, pour un
système comme le réseau
téléphonique commuté, le chemin par lequel va passer la voix (ou les
données) est établi au commencement de la connexion : le protocole est
« orienté connexion ».
Les protocoles IP assurent l'acheminement au mieux (best-effort delivery) des
paquets. Ils ne se préoccupent pas du contenu des paquets, mais fournissent une
méthode pour les mener à destination.
Les protocoles IP sont considérés comme « non
fiables ». Cela ne signifie pas qu'ils n'envoient pas correctement les
données sur le réseau, mais qu'ils n'offrent aucune garantie pour les paquets envoyés
sur les points suivants :
·
corruption de données ;
·
ordre d'arrivée des paquets (un paquet A peut
être envoyé avant un paquet B, mais le paquet B peut arriver avant le paquet
A) ;
·
perte ou destruction de paquet ;
·
duplication des paquets.
En termes de fiabilité, le seul service offert par un protocole
IP est de s'assurer que les en-têtes de paquets transmis ne comportent pas
d'erreurs grâce à l'utilisation de somme de
contrôle (checksum). Si l'en-tête
d'un paquet comprend une erreur, sa somme de contrôle ne sera pas valide et le
paquet sera détruit sans être transmis. En cas de destruction d'un paquet,
aucune notification n'est envoyée à l'expéditeur (encore qu'un paquet ICMP peut être envoyé).
Les garanties qu'un protocole IP n'offre pas sont déléguées aux
protocoles de niveau supérieur. La raison principale de cette absence de
gestion de la fiabilité est la volonté de réduire le niveau de complexité des routeurs et ainsi de leur permettre de disposer
d'une plus grande rapidité. L'intelligence est alors déportée vers les points
d'extrémité du réseau.
Articles
détaillés : IPv4 et IPv6.
En-tête IPv4.
En-tête IPv6.
IPv4 est
le protocole le plus couramment utilisé en 2012 sur Internet tout comme sur les réseaux privés. IPv6 est son successeur. IPv4 utilise des
adresses codées sur 32 bits (soit
en théorie 4 294 967 296 adresses possibles) tandis qu'IPv6 les
code sur 128 bits (soit en théorie 3,4×1038 adresses
possibles).
Le premier champ d'un paquet d'un protocole IP est composé de 4
bits qui indiquent la version du protocole utilisé. La valeur 0100 (4 en binaire) est utilisée pour IPv4, 0110 (6 en
binaire) pour IPv6. La valeur 0101 (5 en binaire) est utilisée pour le
protocole Internet Stream
Protocol, la valeur 0111 (7 en binaire) pour TP/IX (RFC 1475),
1000 (8 en binaire) pour PIP (RFC 1621)
et 1001 (9 en binaire) pour TUBA (« TCP and UDP with Bigger
Addresses », RFC 1347)1.
Article
détaillé : Épuisement des
adresses IPv4.
La transition vers
le protocole IPv6 permet
de contourner une pénurie d'adresses publiques, ce qui aurait pu freiner la
croissance du nombre de terminaux reliés à Internet. En attendant, les
opérateurs envisagent le recours à des traducteurs d'adresse réseau à grande échelle pour prolonger le fonctionnement
d'IPv4.
Distribution de
l'espace d'adressage IPv4 en février 2011.
1.
http://www.ai.univ-paris8.fr/~ga/Public/EnteteProtocoles.pdf [archive]
·
IPv4
·
IPv6
·
Internet
·
TCP/IP
·
SCTP
·
Maximum
Transmission Unit (MTU)
·
Transmission
Control Protocol (TCP)
·
RIPE
·
RFC 791,
Internet Protocol
·
A Protocol for Packet
Network Intercommunication (1974), dans lequel Vinton Cerf et Robert E. Kahn présentent le protocole IP